Coronary Artery Disease - Individual Articles

Coronary Artery Disease AUC

Bibliographic Cite	PMID Link	Literature Type	Level of Evidence	Purpose	Population	Intervention and Outcome Measures	Results/ Recommendations	Study Limitiations
Buckert D, Witzel S, Steinacker JM, et al. Comparing cardiac magnetic resonance-guided versus angiography-guided treatment of patients with stable coronary artery disease: Results from a prospective randomized controlled trial. JACC Cardiovasc Imaging. 2018; 11(7)-987-996.	29976305	Prospective, single- center, multi-reader	moderate	The prospective and randomized evaluation of cardiovascular endpoints and quality of life in patients with stable coronary artery disease comparing a cardiac comparing a comparing comparing a comparing comparing a comparing comparing a cardiac comparing a cardiac comparing a comparing compar	Patients presenting to the outpatient clinic of a single institution for the evaluation of symptoms indicating stable symptomatic CAD (e.g., exercise- related angina pectoris or dyspnea) were considered eligible and consecutively screened for enrollment. Patients had to be at intermediate to high CAD risk. Exclusion criteria were unstable angina pectoris, cardiac or respiratory instability, contraindication to CMR, age 418 years, and inability to give written informed consent.	Patients with symptomatic CAD were randomized to diagnostic coronary angiography (group 1) or adenosine stress CMR (group 2). The primary endpoint was the composite of cardiac death and nonfatal myocardial infarction. Quality of life was assessed using the Seattle Angina Questionnaire at baseline and during follow- up. All CMR images were analyzed by 2 readers in consensu. To avoid bias, readers were blinded to initial clinical assessment and the results of other examinations (e.g., treadmill testing). Follow- up information was gathered annually after enrollment by outpatient clinic visits and by telephone interviews of patients and their general practitioners.	Two hundred patients were enrolled. In group 1, 45 revascularizations (45.9%) were performed. In group 2, 27 patients (28.1%) were referred to revascularization because of ischemia on CMR. At 12-month follow-up, 7 primary events occurred: 31 ng group 1 (event rate 3.1%) and 4 in group 2 (event rate 4.2%), with no statistically significant difference (p = 0.72). Within the next 2 years, 6 additional events could be observed, giving 4 events in group 1 and 9 events in group 2 (event rate 4.1% vs. 9.4%; p = 0.25). Group 2 showed significant quality-of-life improvement after 1 year in comparison to group 1. The authors conclude that a CMR- based management strategy for patients with table coronary artery disease was safe, reduced revascularization procedures, and resulted in better quality of life at 12-month follow-up, though noninferiority could not be proved. Optimal timing for reassessment remains to be investigated.	There was a small but significant difference concerning physical limitation, treatment satisfaction, and quality of life in favor of the CMR group after 12 months of follow-up. This finding supports the appropriateness of stress perfusion CMR in patient management. Nevertheless, the differences in quality of life were not sustained during longer term follow- up. This finding might be consistent with the observation that more endpoints occurred and revacularization procedures were performed in this period. Further studies focusing on long-term management of patients with stable CAD on the basis of symptoms and already performed diagnostic and therapeutic interventions thus are warranted.
Chow BJ, Yam Y, Small G, et al. Prognostic durability of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2021; 22(3):331- 338.	33111135	Prospective, single- center, single- reader cohort study	moderate	To confirm the incremental prognostic value of coronary computed tomographic angiography (CCTA) measured over a prolonged follow-up duration.	Enrolled were consecutive patients (n = 8,667; mean age = 57.1; 53% male) without history of myocardial infarction, revascularization, cardia transplantation, or congenital heart disease. The majority had chest pain (61.3%) or dyspnea (27.6%).	Patients were followed for a mean duration of 7 +/- 2.6 years for major adverse events (MAE) and major adverse cardiac events (MACE). Prognostic value of CAD severity for unadjusted and adjusted MAE and MACE was assessed for the study population. Coronary artery lumen and diameter stenosis were visually graded using the 17-segment model with a 4 point grading score (normal, mild (<50%), moderate (50–69%), severe (>20%)). Patients were categorized as normal, non-obstructive CAD, and obstructive CAD. CCTA was evaluated for CAD severity, total plaque score (TPS), and left ventricular ejection fraction.	At follow-up, there were a total of 723 MAE, 278 MACE, 547 all- cause deaths, 110 cardiac deaths, and 104 non fatal myocardial infarction. Patients without coronary atherosclerosis at the time of CCTA had a very low annual event rate for both MAE and MACE increased with increasing TPS and severity of CAD. In patients with non-obstructive CAD and who were statin-naive, TPS >5 had MACE rates >0.75%/vear. Patients with high-risk CAD had an annual MAE and MACE rates of 3.52%/year and 2.58%/year, respectively. The authors conclude that ICCTA has independent and incremental prognostic value that is durable over time. The absence of coronary atherosclerosis portends an excellent prognosis.	The authors note that, as a single-center prospective study, results may not reflect the population or practice at other centers. Additionally, incomplete follow-up may bias study results. Finally, since coronary artery calcium was not routinely performed in the patient population, its prognostic value could not be studied. Similarly, the CAD-reporting and data system (RADS) classification was not in existence, and therefore more granular CAD-RADS classification of this patient population is not available. More studies are needed to understand the incremental value of CAD-RADS over historical CCTA reporting.
Curzen N, Nicholas Z, Stuart B, et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: The FORECAST randomized trial. Eur Heart J. 2021; 42(37):3844-3852.	<u>34269376</u>	Prospective, multi- center, single- reader	moderate	To test whether an evaluation strategy based on fractional flow reserve (FFRCT) using computed tomography coronary angiography (CTCA) would improve economic and clinical outcomes compared with standard care.	A total of 1,400 patients (mean age 59.8) with stable chest pain in 11 centers were included. All screened patients were at least 18 years old and were attending a Rapid Access Chest Pain Clinic for assessment of stable chest pain. Patients were excluded if they had a history consistent with acute coronary syndrome, were deemed not to require a test to investigate their symptoms, were ineligible to undergo a CTCA, had a history of previous coronary revascularization, or had a life expectancy of < 12 months.	Patients were randomized to initial testing with CTCA with selective FFRCT (experimental group) or standard clinical care pathways (standard group). The primary endpoint was total cardiac costs at 9 months. Secondary endpoints were angina status, quality of life, major adverse cardiacan de cerebroascular events, and use of invasive coronary angiography. Randomized groups were similar at baseline.	Most patients had an initial CTCA: 439 (63%) in the standard group vs. 674 (96%) in the experimental group, 254 of whom (38%) underwent FFRCT. Mean total cardiac costs were higher (+8%) in the experimental group, with a 95% confidence interval from -8% to +23%, though the difference was not significant (P = 0.10). Major adverse cardiac and cerebrovascular events did not differ significantly (10.2% in the experimental group vs. 10.6% in the standard group) and angina and quality of life improved to a similar degree over follow-up in both randomized groups. Invasive angiography was reduced significantly in the experimental group (15% ss. 25%, P = 0.01). The authors conclude that a strategy of CTCA with selective FFRCT in patients with stable angina did not differ significantly from standard clinical care pathways in cost or clinical outcomes, but did reduce the use of invasive coronary angiography.	The authors note that, first, and most important, they could not anticipate the precise rate of use of CTCA in the standard group. The national guidelines were revised during planning of the trial, and while they recommended that CTCA become the defaul test for most patients attending Rapid Access Chest Pain Clinics, the infrastructure in many areas of the National Health Service at that time could not provide the test. A second limitation of the trial is that the costs in this study were based on UK National Health Service cost tariffs, and may not be generalizable to other countries with different cost structures in their health delivery systems. Third, the authors used cardiac costs, rather than total medical costs, as the primary endpoint. Cardiac costs are more likely to be affected by the alternative strategies and were simpler for the local research teams to document.

Da Dr Co an dia dis fra JA 2(:	nand I, Raijmakers PG, essen RS, et al. mparison of coronary CT giography, SPECT, PET, giography, SPECT, PET, gnosis of ischemic heart ease determined by ctional flow reserve. VA Cardiol. 2017; 0):1100-1107.	28813561	Prospective, single- center, single- reader	low	To establish the diagnostic accuracy of CCTA, SPECT, and PET and explore the incremental value of hybrid imaging compared with fractional flow reserve.	A total of 1,598 patients were assessed for eligibility. Of these, 1,300 were excluded, primarily for previous revascularization (n = 925), workup for aortic valve replacement (n = 121), or previous cardiac taining (n = 106). A total of 208 patients were included in the study.	This prospective clinical study included 208 patients with suspected CAD who underwent CCTA, technetium 99m/tetrofosmin-labeled SPCT, and 150/120 PET with examination of all coronary arteries by fractional flow reserve, and was performed from lanuary 23, 2012, to October 25, 2014. Scans were interpreted by core laboratories on an intention-to- diagnose basis. Hybrid images were generated in case of abormain noninvasive anatomical or functional test results. Nain outcome was hemodynamically significant stenosis in at least 1 coronary artery as indicated by a fractional flow reserve of 0.80 or less and relative diagnostic accuracy of SPECT, PET, and CCTA in detecting hemodynamically significant CAD.	Of the 208 patients in the study (76 women and 132 men; mean (SD) age, 58 [9] years), 92 (44.2%) had significant CAD (fractional flow reserve 0.80). Sensitivity was 95% (55%CL, 82%–55%) for CCTA, 57% (95%CL, 46%–67%) for SPECT, and 87% (95%CL, 78%–93%) for PET, whereas specificity was 60% (65%CL, 15%–69%) for CATA, 94% (95%CL, 88%–98%) for SPECT, and 84% (95%CL, 75%–89%) for SPET. The thereas of specificity was found to be noninferior to PET in terms of specificity was 160% (95%CL, 15%–93%) for SPET, and 84% (95%CL, 75%–89%) for SPECT, and 84% (95%CL, 75%–89%) for SPECT, and 84% (95%CL, 75%–89%) for SPET. Single-photon emission tomography was found to be noninferior to PET in terms of specificity (8%, 95%CL, 65%–79%, P=.003) and SPECT (77%, 95%CL, 71%–83%, P=.02). Diagnostic accuracy was not enhanced by ET ther hybrid SPECT and CCTA (76%, 95%CL, 75%–82%, P=.32), but resulted in an increase in specificity (P – .004) at the cost of a decrease in sensitivity (P =.001). The authors conclude that this controlled clinical head-to-head comparative study revealed PET to exhibit the highest accuracy for diagnosis of myocardial ischemia. Furthermore, a combined anatomical and functional assessment does not add incremental diagnostic value but guides clinical decision-making in an unsalutary fashion.	This study was powered for noninferiority testing of SPECT comparedwith PET, whereas secondary end points of hybrid imaging should be interpreted with caution given the limited sample size. The prevalence of disease in this study was generally higher than reported in other trials of the diagnostic accuracy of noninvasive imaging to detect CAD; these results should be interpreted in the context of this particular patient population.
De al. co	dic A, Kate GJ, Roos CJ, et Prognostic value of ronary computed	<u>26754124</u>	Prospective / retrospective, multi- center, single-	low	To determine the prognostic value of coronary computed	Eligible patients (aged between 45 and 70 years) were those clinically referred to the outpatient clinics of 2 academic hospitals	Image acquisition was performed on multidetector row CT scanners with 64 rows. Detection of coronary artery calcium was performed using an electrocardiogram-triggered axial scan and	A total of 665 patients at high risk (mean age 56±9 years, 417 men), were included. During a median follow-up of 3.0 (interquartile range 1.3 to 4.1) years, adverse events occurred in 40 subjects	First, the rather low adverse event rate requires caution to the interpretation of the predictive power of CCTA. Larger study populations and/or longer follow-up times, expecting
to pa sy	nography imaging in tients at high risk without nptoms of coronary artery		reader		tomography (CT) angiography (CCTA) next to the coronary artery calcium	by general practitioners or other physicians for optimized cardiovascular management and primary prevention according to	measured using the Agatston method. Patients were stratified in groups according to the extent of coronary artery calcification: 0, 1 to 100, 101 to 400, and >400 CACS. CCTA was performed during	(6.0%). By multivariate analysis, adjusted for age, gender, and CACS, obstructive CAD on CCTA (250% luminal stenosis) was a significant predictor of adverse events (hazard ratio 5.9 [Cl 1.3 to 26.1]).	to yield higher incidences of adverse events, should provide more robust outcomes. The incorporation of late coronary revascularization in addition to all-cause mortality and
dis 11	ease. Am J Cardiol. 2016; 7(5):768-774.				score (CACS) in patients at high CVD risk without symptoms suspect for coronary artery disease (CAD).	current guidelines. Exclusion criteria included a history of CAD, renal dysfunction (Secum creatinine >120 mmo/L), contrast allergy, irregular heart rhythm, severe chronic obstructive pulmonary disease, or known pregnancy.	a single inspiration using an electrocardiogram-triggered axial scan with X-ray tube current modulation and tube voltage reduction when clinically feasible. Stenosis grade was visually classified either as <29%, 30–49%, 50–69%, 270% luminal narrowing or occluded. The primary outcome measure was a combination of adverse events including all-cause mortality, nonfatal myocardial infarction (MI), unstable angina, or coronary revascularization beyond 90 days after the index CCTA.	Addition of CCTA to age, gender, plus CACS, increased the C statistic from 0.81 to 0.84 and resulted in a total net reclassification index of 0.19 (pc.00.1). The authors conclude that CCTA has incremental prognostic value and risk reclassification benefit beyond CACS in patients without CAD symptoms but with high risk of developing CVD.	nonfatal MI may be a limitation as late revascularization is a less hard outcome. However, by incorporating late coronary revascularization as part of our composite outcome, we attempted to investigate whether CCTA findings are associated with CAD that is prone to progress, causing symptoms and eventually the need for coronary revascularization. Also, late coronary revascularization was incorporated into the composite outcome, as is it is often included as an outcome of other comparable imaging studies focused on prognosis.
Du Mi ris his dis SC th co Co 13	dum R, Dzaye O, rbolouk M et al. Coronary ery calcium scoring in low patients with family tory of coronary heart ease: validation of the CT guideline approach in coronary artery calcium sortium. J Cardiovasc mput Tomogr. 2019; (3):21-25.	30935842	Retrospective, multi- center, single- reader	low	To critically assess the unique 2017 Society of Cardiovascular Computed Tomography (SCCT) recommendation of considering coronary artery calcium (CAC) scoring in low risk individuals (< 5%) with a family history (FH) of CHD using the largest multi- center observational cohort study of CAC scoring yet assembled, the CAC Consortium.	Included were asymptomatic participants with a self-reported FH of CHD and ASCVD risk-S5% as defined using the 2013 ACC/AHA Poole Cohort Equation (N=14,169). Patients were referred for CAC scoring by a physician.	The CAC Consortium is a multi-center observational cohort study from four clinical centers linked to long-term follow-up for cause- specific mortality. FH of CHD was generally reported as the presence of a first-degree relative with a history of CHD. Hypertension, dyslipidemia, and diabetes were considered present if a patient reported a prior diagnosis and/or was on therapy with anti-hypertensives, lipid-lowering medications, or oral hypoglycemics or insulin. Smoking status was characterized as "never, former, or current smoker	This cohort had a mean age of 48.1 (SD 7.4), was 91.3% white, 47.4% female, had an average ASCVD score of 2.3% (SD 1.3), and 59.4% had a CAC=0. The event rate for all-cause metality was 1.2 per 1,000 person-years (0.3 per 1.000 person-years for CVD-specific mortality, and 0.2 per 1,000 person-years for CHD-specific mortality, and 0.2 per 1,000 person-years for CHD-specific mortality, and 1.2 per 1,000 person-years for CHD-specific mortality, and 1.2 per 1,000 person-years for CHD-specific mortality, and 1.0.4 (59% CI 1.5–3.3) higher risk of all-cause mortality and 1.0.4 (59% CI 3.2–3.3.7) times higher risk of CHD- specific mortality compared to individuals with CAC=0. The NNS to detect CAC =100 in this sample was 9. The authors conclude that, in otherwise low risk patients with FH of CHD, CAC=100 were associated with increased risk of all-cause and CHD mortality with event rates in a range that may benefit with preventive pharmacotherapy. These data strongly support new SCCT recommendations regarding testing of patients with a family history of CHD.	This study is an observational, retrospective cohort study of patients referred for clinical CAC scanning, and as such, results may not be generalizable to all patients with FH of CHD because of potential referral bias. Second, the population is predominantly white (91.3%), which limits its generalizability to other ethnic groups. Additionally, the effect of our study is likely to be underestimated as both patients and clinicians were informed about the results of the CAC scan, which may have led to altered treatment decisions and risk factor modification in those with the highest CAC scores.

Houssany-Pissot S, Rosencher J, et al. Screening coronary artery disease with computed tomography angiogram should limit normal invasive coronary angiogram, regardless of pretest probability. Am Heart J. 2020; 223:113-119.	32087878	Retrospective, multi- center, single- reader	law	To evaluate, in a real-life setting, the rate of strictly normal invasive coronary angiogram (ICA) following a positive non-invasive test (either functional testing (FT) or computed tomography angiogram (CCTA)).	Included were all patients who underwent an ICA with a prior positive FT or CCTA. A total of 2,513 patients who have had neither functional testing nor CCTA prior to ICA were excluded. This left a final sample of 4,952 patients who underwent ICA following either a positive functional test (3,276) or a positive CCTA (1,676).	Patients were categorized in 5 subgroups, according to pretest probability (PTP) of having a coronary artery disease (CAD). Main results of ICA were defined as normal ICA, non-obstructive CAD (nonoCAD) and obstructive CAD (oCAD). Positive functional testing was defined by ischemia findings during stress or recovery, like patient chest pain, IECG modifications, left ventrice ejection fraction decrease, abnormal cinetic wall motion, and abnormal myocardial perfusion. CCTA findings were deemed positive if coronary artery stenosis 2 50% was reported, if the stenosis calcification was classified as severe, or if the coronary artery calcium socre considering the Agastron method was too high (i.e. above 400). Based on guidelines recommendations, patients were categorized in one of the 5 TPT following groups: (1) ow risk (PTP c15%). (2) lower intermediate risk (PTP 3 5to 50%), (4) high-risk (PTP 50% to 65%) and (5) very high-risk (PTP > 65%).	For 4952 patients who underwent ICA following either a positive FT (3276, 66.2%) or CCTA (1676, 33.8%), the PTP was: (1) low (+ 15%; n=968, 15-8%) (2) lower intermediate [15 to 35%; n=1336, 22.70%], (3) higher intermediate [35 to 50%; n=806, 16.3%], (4) high [50% to 65%; n=806, 17.7%], and (5) very high [> 65%; n=965, 19.5%]. ICA showed no CAO (1819 patients, 16.5%), non-CAD (1139 patients, 24.1%) or oCAO (1840 patients, 59.4%). Without considering the PTP values, CCTA compared to FT showed less frequently normal ICA (7% vs. 16.5%), and more frequently CAO (non-OCAD 27.9% vs. 22.2%; oCAO 65.1% vs. 56.4%)(all p-0.0001). When authors considered the different PTP values, CCTA always showed lower rates of normal ICA than the FT. In low and lower intermediate-risk patients, CCTA detected more frequently oCAD compared to FT (p-0.001). The authors conclude that CCTA is a better alternative than FT to limit unnecessary ICA regardless of PTP value, without missing abnormal ICA.	This was a retrospective study. So the comparison between anatomical and functional testing was not based on randomized inclusion. Second, as the study was not randomized, the proportions of each non-invasive functional testing were not equal. However, because the functional testing group were higher risk, the authors note it is even more surprising that CTCA managed to have lower rates of normal angiograms.
Lee H, Yoon YE, Lee W, et al. Prognosis of anatomic coronary artery disease without myocardial ischemia: Coronary computed tomography angiography detects high- risk patients even in cases of negative single-photon emission computed tomography findings. J Cardiol. 2018; 72(2):162-169.	29525542	Retrospective, multi- center, multi-reader	low	To suggest a new risk stratification strategy using CCTA in patients with anatomic CAD but without myocardial ischemia on SPECT.	Consecutive patients (n = 798) with CAD on CCTA who underwent SPECT for evaluation of mycardial ischemia were retrospectively evaluated. The inclusion criteria were as follows: (1) patients with coronary atherosclerotic plaque on CCTA and (2) patients who underwent SPECT for evaluation of the hemodynamic significance of CAD within 90 days from CCTA. Patients were excluded from the study if any of the following was present: (1) prior history of CAD or (2) uninterpretable CCTA images. Consequently, 798 patients were included in the analysis.	The primary outcome was the occurrence of adverse cardiac events, including cardiac death, nonfatal myocardial infarction, unstable angina, and late revascularization. CCTA images were acquired using either a retrospectively electrocardiogram (ECG) gated or prospectively ECG-ritiggered protocol using a 64-detector row CT scanner. The coronary artery calcium score (CACS) was measured using the Agatiston scoring system (in units), and graded as follows: 0, 1–399, and 400. Myocardial SPECT was performed with pharmacologic stress, using technetium-99m tetrofosmin or estambilis as the radiotracer. Follow-up information was obtained by either clinical visits or telephone interview.	Of the enrolled patients, 542 (68%) showed no perfusion defect (PD) on SPECT. During the follow-up (median, 22.6 months), adverse cardiac events occurred in 23 patients without PD (4.6%). Presence of plaque in 24 coronary segments, plaque in the left main or proximal left anterior descending coronary artery, and partially calcified plaque presence were independent predictors of adverse events. When authors defined the CCTA score based on these 3 predictors (O–3 points), the annualized event rates increased with increasing CCTA scores. Patients with a CCTA score of 3 were associated with a 25-fold risk increase [adjusted HR 23.18; $p = 0.003$) and showed unfavorable event-free survival, comparable to those with PD on SPECT ($p = 0.219$). The authors conclude that anatomic CAD patients without evidence of myocardial ischemia on SPECT but with high risk characteristics on CCTA shows further risk stratification even in patients with negative SPECT findings.	The subsequent diagnostic tests or therapeutic procedures were not guided by a specific protocol, and might have been influenced by the CCTA results. Secondly, plaque composition was simply classified as non-calcified, partially calcified, or calcified plaque and the plaque characteristics that were known as the rupture-prone plaque – positive remodeling, low attenuation plaque, spotty calcification, or napkin-ring sign – were not included in the study analysis. Lastly, although this is the largest study evaluating prognostic value of CCTA exclusively in patients with anatomic CAD, the effect of aggressive medical treatment in each risk group could not be evaluated, because of the limited number of patients.
Maurovich-Horvat P, Bosserdt M, Kołoed KF (DISCHARGE Trial Group), et al. CT or invasive angiography in stable chest pain. N Engl J Med. 2022; 386(17):1591-1602.	35240010	Prospective, multi- center, multi-reader	high	To report the comparative effectiveness of computed tomography (CT) and invasive coronary angiography (ICA) in preventing the primary outcome of major adverse cardiovascular events, defined as cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke.	A total of 3,561 patients (56% female, mean age of 60.1+/- 10.1 years) were enrolled. All patients were referred for ICA to one of 26 centers in 16 European countries becaue of stable check pain with intermediate (10-60%) pretest probability of obstructive CAD.	The pretest probability of obstructive CAD was assessed after enrollment but before randomization with a contemporary calculator according to the patient's age, sex, and type of chest pain. Patients were randomly assigned in a 1:1 ratio to undergo either CT or 1(cA with the use of a Web-based system to ensure concealment of group assignments. CT scans were interpreted by board-certified radiologists and ICA was performed according to contemporary guidelines by board-certified cardiologists. It was determined that the enrollment of 3,546 patients would provide the trial with S0% power to detect a relative reduction in the annual risk of the primary outcome from 1.4% in the ICA group to 0.8% in the CT group, assuming an annual loss to follow-up of 5%	A total of 3833 patient were randomly assigned to the CT group and 1834 patients to the ICA group. The median follow-up was 3.5 years (interquartile range, 2.9 to 4.2), and complete follow-up for the primary outcome was obtained for 3,523 patients (98.9%). Major adverse cardiovascular events occurred in 38 of 1,808 patients (2.1%) in the CT group and in 52 of 1,753 (3.0%) in the ICA group (hazard ratio, 0.70,95% confidence interval (2.10, 0.46 to 1.07; $P = 0.10$). Major procedure related complications occurred in 9 patients (0.5%) in the CT group and in 33 (1.9%) in the ICA group (hazard ratio, 0.26; 95% confidence interval (1.0, 0.46 to 1.07; $P = 0.10$). Major procedure related complications occurred in 9 patients (0.5%) in the CT group and in 33 (1.9%) in the ICA group (hazard ratio, 0.26; 95% confidence interval (1.17; 95% c), 0.92 to 1.48). The authors conclude that the frequency of major procedure related complications was lower with an initial CT strategy.	First, patients and their clinicians were necessarily aware of the group assignments, which might have influenced outcomes, especially patient-reported outcomes. Second, the incidence of nondiagnostic CT in this and previous trials was approximately 6%, which indicates the need for continuous quality control of the conduct and interpretation of CT. Third, because this was a pragmatic trial, diagnostic imaging results informed, but did not mandate, management decisions, which might have resulted in a departure from guideline-based care.
Pezel T, Hovasse T, Kinnel M, et al. Prognostic value of stress cardiovascular magnetic resonance in asymptomatic patients with known coronary artery disease. J Cardiovasc Magn Reson. 2021; 23(1):19.	33678173	Retrospective, single-center, multi- reader	low	To assess the long-term prognostic value of vasodilator stress perfusion cardiovascular magnetic resonance (CMR) in asymptomatic patients with obstructive CAD.	Errolled were 1,529 asymptomatic patients with known obstructive CAD (mean 67.7 ± 10.5 years, 82.0% males) and referred for vasodilator stress perfusion CMR. Known obstructive CAD was defined by a history of percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) or myocardial infarction (MI).	Between 2009 and 2011, patients were followed for the occurrence of major adverse cardiovascular events (MACE), defined by cardiovascular mortality or recurrent non-fatal myocardial infarction (MI). Uni- and multivariable Cox regression: were performed to determine the prognostic value of myocardial ischemia and myocardial infarction defined by late gadolinium enhancement (LGE) with ischemic pattern.	A total of 1,342 patients (87.8%) completed follow-up (median 8.3 years) and 195 had MACE (14.5%). Patients without stress-induced mycoardial ischemia had a low annualized rate of MACE (2.4%), swhereas the annualized rate of MACE was higher for patients with mild, moderate, or severe ischemia (7.3%), t6.5%, and 42.2%, respectively. p trend < 0.001). Using Kaplan-Meier analysis, myocardial ischemia and LGE were associated with MACE (hazard rate, IR 2.52; 95% Cl 1.90–3.34 and HR 2.04; 95% Cl 1.38–3.03, respectively, both p < 0.001). In multivariable stepwise Cox regression, myocardial ischemia and LGE were independent predictors of MACE (HA 2.80 95% Cl 2.10–3.73, p < 0.001 and HR 1.51; 95% Cl 1.10–2.27, p = 0.045; respectively.) The addition of myocardial ischemia and LGE kere to improved model discrimination for MACE (change in C statistic from 0.61 to 0.68; NRI = 0.207; IDI = 0.021).	A total of 124 (8.5%) patients were lost to follow-up. Additionally, although adenosine is commonly used for stress perfusion CNR, dipyridamole was used in the center between 2009 and 2011 mainly because of medico economic reasons and similar or very close efficacy/safety profile compared to adenosine.

Pontone G, Andreini D, Guaricci AI, et al. The STRATEGY study (stress cardiac magnetic resonance versus computed tomography coronary angiography for the management of symptomatic revascularized patients): Resources and outcomes impact. Circ Cardiovasc Imaging. 2016; 9(10):e005171.	27894070	Prospective, single- center, multi-reader	low	To compare an anatomic (computed tomography coronary angiography; cTCA) versus a functional (stress-CMR) strategy in symptomatic patients with previous myocardial revascularization procedures.	600 symptomatic patients with a previous history of revascularization by PCI or CABG referred to a single hospital between January 2011 and December 2013 to be evaluated by clinically indicated cTCA or stress-CMR were enrolled. Exclusion criteria were unstable angina; cardiac diseases different from CAD, such as heart failure, infiltrative or hypertrophic cardiomyopathy, and myocarditis; agent; inability to usuati an breath hold; pregnancy; cardiac arrhythmia; body mass index-358 kg/m2; claustrophobia; presence device; and contraindication to dipyridamole and gadolinium intravenous administration.	Patients with chest pain and previous revascularization included in a prospective observational registry and evaluated by clinically indicated CT6. (n=300, mean age 68.29.57, years, male 253) were enrolled and followed-up in terms of subsequent noninvasive tests, invasive coronary angiography, revascularization procedures, cumulative effective radiation dose, major adverse cardiac events, defined as a composite end point of nonfatal myocardial infarction and cardiac death, and medical costs.	The mean follow-up for cTCA and stress-CMR groups was similar (773.6±345 versus 752.8±291 days; P=0.21). Compared with stress- CMR, CTCA was associated with a higher rate of subsequent noninvasive tests (28% versus 17%; P=0.0009), invasive coronary angiography (31% versus 05%; P=0.0007). Stress-CMR strategy was associated with a significant reduction of radiation exposure and cumulative costs (55% and 24%; respectively; P<0.001). Finally, patients undergoing stress-CMR showed a lower rate of major adverse cardiac events (5% versus 10%; P<0.001) and cost- effectiveness ratio (119.9±250.92 versus 218.12±298.45 Euro/y; P<0.001). The authors conclude that, compared with cTCA, stress- CMR is more cost-effective in symptomatic revascularized patients.	The major limitation is that this is an observational study, and therefore, its results are subject to potential selection biases in comparison to the results from randomized controlled trials. Second, this is a single-center study from an Institute with extensive experience in performings cOLA and stress-CMR examinations. Therefore, findings could not be directly transferred to the real clinical world. The study also did not compare the index tests at baseline with a reference standard technique.
Rudzinski PN, Kruk M, Kepka C, et al. The value of coronary artery computed tomography as the first-line anatomical test for stable patients with indications for invasive angiograph due to suspected coronary artery disease: CAT-CAD randomized trial. J Cardiovasc Comput Tomogr. 2018; 12(6):472-479.	<u>30201310</u>	Prospective, single- center, multi-reader	low	To evaluate whether the use of coronary computed tomography angiography (CCTA) as the first-line anatomical test in patients with suspected significant coronary artery disease (CAD) may reduce the number of coronary invasive angiographies (ICA), and expand the use o CCTA in patients currently diagnosed invasively.	Study included stable patients with suspected CAD. Patients were excluded if they had: a diagnosis of acute coronary syndrome, high likelihood of in-stent restenosis (evaluated as a recurrence of typical angina symptoms within one year o their last PCJ, contraindications to ICA, estimated glomerular filtration rate:60 ml/min/1.73m2, significant arrhythmia, or body mass index f (BMI) > 35 kg/m2.	120 patients (age:60.6 ± 7.9 years, 35% female) with indications to ICA were randomized 1:1 to undergo CCTA versus direct ICA. Outcomes were evaluated during the diagnostic and therapeutic periods. In order to define the type of angina, the traditional clinical classification of chest pain was used initially (typical angina, atypical angina, non-anginal chest pain). Basing on the criteria of age, sex and anginal symptoms, the PTV value was estimated. Finally, it enabled the proper selection of individuals with indications for elective ICA. Those were patients with the left ventricle ejection fraction <50% with typical angina symptoms, patients with PTP 50-85% with positive/intermediate (unclear) functional test, or patients with PTP>85%.	The number of invasively examined patients was reduced by 64.% in the CCTA group as compared to the direct (LA group (21x95,p, < 0.0001). The number of patients with ICAs not followed by coronary intervention was reduced by 88.1% with the CCTA strategy (5x92,p, 0.0001). Over the diagnostic and therapeutic course there were no significant differences regarding the median volume of contrast (CCTA 80.3 ml (56.0-165.0) vc ICA 90.0 ml(55.0-10.00, p-0.099), while a non-significant trend towards higher radiation dose in the p=0.05). There were no acute cardiovascular events. The authors conclude that CCTA may hypothetically act as an effective 'gatekeeper' to the catheterization laboratory in the diagnosis of stable patients with current indications for ICA. This strategy may result in non-invasive, outpatient-based triage of two thirds of individuals without actionable CAD, obviating unnecessary invasive examinations. However, the longer follow-up is indispensable.	First, this was an open-label study and individual decisions for treatment options may have been influenced by the initial diagnostic modality employed. Second, the study group was relatively small, which did not allow for a robust evaluation of clinical complications associated with either strategy, except for the number of hospitalizations. Third, authors excluded patients with decreased renal function for the purpase of this investigation. Fourth, the primary outcome measures alimed to explore the impact of CCTA during the early diagnostic-therapeutic period in patients with suspected CAD, with regards to a definitive diagnosis and subsequent clinical management decisions. Fifth, the study was performed in an experienced center with a high volume CCTA program, which may not reflect the factual clinical situation in the majority of institutions. Sixth, due to high prevalence of patients with advanced atherosclerosis, results hardly can be referred to application of basic, 64 slice CT scanner for the tested clinical scenario.
Jeurinean InVestigators; Newby DE, Adamson PD, Berry C, et al. Coronary CT angiography and S-year risk of myocardial infarction. N Engl J Med. 2018; 379(10):924-933.	37143338	creter, parallel- group trial	ungri	PROMISE trials followed PROMISE trials followed patients for a relatively short time (20-22 months), and the longer-term effects on coronary heart disease events are unknown. The authors now report the 5- year clinical outcomes of the SCOT-HEART trial to determin the effect of CTA on longer-term investigations, treatments, and clinical events.	Incusion Criteria were age >18 and 575 years and attendance at the outpatient Cardiology clinic with chest pain (Rapid Access Chest Pain Clinic). Exclusion criteria were inability or unvilling to undergo computed tomography scanning, known severe renal failure (serum creatine >2.21 mg/dL or estimated glomerular filtration rate <30 mL/min/1.73 m2), previous recruitment to the trial, major allergy to iodinated contrast agent, unable to give informed consent, known pregnancy and acute coronary syndrome within 3 months.	In an open-water, muticenter, parallelergroup trail, authors randomly assigned 4,146 pattents with stable chest pain who had been referred to a cardiology clinic for evaluation to standard care plus CTA (2,073 patients) or to standard care alone (2,073 patients). Investigations, treatments, and clinical outcomes were assessed over 3 to 7 years of follow-up. The primary end point was death from coronary heart disease or nonfatal myocardial infarction at 5 years.	meueni ouration or ionow-up was 4.8 years, which yielded 20,254 patient years of follow-up. The S-year rate of the primary end point was lower in the CTA group than in the standard-care group (2.3% [48 patients] vs. 3.9% [81 patients]; hazard ratio, 0.59; 95% confidence interval [CI], 0.41 to 0.84; P = 0.004). Although the rates of invasive coronary angiography and coronary revascularization were higher inthe CTA group than in the standard-care group in the first few months of follow-up, overall rates were similar at 5 years: invasive coronary angiography was performed in 491 patients in the CTA group and in 502 patients in the standard-care group (hazard ratio, 1.00; 95% C), 0.88 to 1.13), and coronary revascularization was performed in 279 patients in the CTA group and in 267 in the standard-care group (hazard ratio, 1.07; 95% C), 0.91 to 1.27). However, more preventive therapies were initiated in patients in the CTA group (odds ratio, 1.24; 95% C), 1.19 to 1.65), as were more antianginal therapies (odds ratio, 1.27; 95% C), 1.05 to 1.65). Sa were more antianginal therapies (odds ratio, 1.27; 95% C), 1.05 to 1.54). There were no significantly lower rate of death at 5 years than standard care alone, without resulting in higher rate of coronary angiography or revascularization.	rms, uns was an open-radee trail, and ascertainment bias is inherent to the trail design. Because event adjudication was not bilnded and clinical diagnoses were coded with knowledge of the assigned trial group, the risk of ascertainment bias is probably higher. This risk may have been mitigated, however, by the fact that the primary long- term end point was composed of hard clinical events. Second, authors do not have data on lifestyle alterations during follow-up and can only speculate that these may have been greater in the CTA group than in the standard-care group. Third, cardiovascular-risk thresholds for the initiation of preventive therapies have fallen since the trial was completed, and it is unclear whether the benefits of CTA will be maintained with these lower thresholds. Finally, the benefit of CTA with respect to the rate of death from coronary heart disease and nonfatal myocardial infarction (1.6 percentage points lower than the rate with standard therapy) may be considered modest, but this absolute benefit is similar to, if not greater than, the benefits achieved in recent pharmaceutical interventional trials involving patients with established coronary heart disease.