Bibliographic Cite	Literature Type	Level of Evidence	Purpose	Population	Intervention and Outcome Measures	Results/ Recommendations	Limitations
Chang MY, Lee SH, Ha JW, et al. Predicting bone marrow edema and fracture age in vertebral fragility fractures using MDCT. AIR Am J Roentgenol. 2020; 215(4):970-977.	Single center retrospective	Low	To evaluate whether CT features can predict bone marrow edema (BME) on MRI and fracture age in vertebral fragility fractures.	both spine CT and spine MRI within 7 days were recruited. 189	The presence and extent of BME were assessed on MRI to divide fractures into those with and without BME. The group with BME was then classified for subgroup analysis into fractures with extensive BME (comprising 50% or more of the vertebral body) and those with BME comprising less than 50% of the vertebral body. On CT, five features (presence of cortical or endplate fracture line, presence of trabecular fracture line, presence of condensation band, change in trabecular attenuation, and width of paravertebral soft-tissue change) were analyzed.	Elevated trabecular attenuation, presence of a cortical or endplate fracture line, and paravertebra isoft-tissue width showed excellent diagnostic indication for fractures with BME (ROC AUCS: 0.990, 0.976, and 0.950, respectively). In the subgroup with extensive BME, paravertebral soft-tissue width was significantly higher, whereas the change in trabecular attenuation was lower compared with those with BME comprising less than 50% of the vertebral body ($p < 0.001$). When BME was present, fracture age was not significantly different between the two subgroups, and only greater trabecular attenuation elevation was predictive of older fracture age on linear mixed model analyses ($p < 0.001$).	First, its retrospective study design including fracture age analysis was the main limitation of this study. Second, multiple myeloma can be present with normal bone marrow signal intensity. VCFs from multiple myeloma can appear being in 38% of cases. Even symptomatic acute or subacute compression fracture in patients with multiple myeloma may not show BME. Finally, to simplify CT analyses, authors evaluated vertebral bodies only with fractures that were confirmed on MRI. Thus, they could not evaluate the false-positive rate of CT diagnosis of VCFs.
He X, Zhao L, Guo X, et al. Differential diagnostic value of 18F- FDG PET/CT for benign and malignant vertebral compression fractures: Comparison with magnetic resonance imaging. Cancer Manag Res. 2018; 10:2105-2115.	Single center retrospective	Low	To evaluate the differential diagnostic value of 2-[fluorine- 18]-fluoro-2-deoxy-0-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (PET)/computed tomography (CT) for benign and malignant vertebral compression fractures (VCFs), where the diagnostic accuracy of 18F-FDC PET/CT was compared with MRI.	87 patients (55 males and 32 females; mean age: 68 years; age range: 60–79 years) with 116 VCFs were retrospectively evaluated. Forty-two cases did not have any primary malignancy, whereas 45 cases had histories of malignant tumors	MRI was performed in all the 87 patients, whereas 18F-FDG PET/CT was executed in 51 patients. Three malignant features (convex posterior cortex, epidural mass formation, and pedicle enhancement) from MRI and the maximum standardized uptake value (SUVmax) from 18F-FDG PET/CT were evaluated in benign and malignant VCFs, respectively. Sensitivity, specificity, positive predictive value, and negative predictive value of MRI and 18F-FDG PET/CT were compared in the differentiation of malignant from benign VCFs.	FDG PET/CT demonstrated higher sensitivity (100%) but lower specificity (38.9%) as compared to MRI with regard to differentiation between benign and malignant VCFs. A significant difference in the SUVmax values was observed between the benign and malignant fractures (2.9 ± 1.0 vs. 5.0 ± 1.8, P < 0.01).	Firstly, the optimal cutoff value of SUVmax as suggested is generated from a single-center retrospective study. Such a SUVmax value cannot be used as a general threshold for differentiating the lesions of malignant from benign. The recommended SUVmax threshold for practice required multicenter study with a large population. Additionally, in this study, the MR imaging protocol primarily used T1 and T2 sequences for the evaluation of VCFs, and additional sequences (such as DWI) were not routinely performed in spine MRI.
Liao X, Jin Z, Shi L, et al. Prevalence of ossification of posterior longitudinal ligament in patients with degenerative cervical myelopathy. Cervical spine 30 CT observations in 7210 cases. Spine (Phila Pa 1976). 2020; 45(19):1320- 1328.	Cross-sectional study	Low	To investigate the prevalence of ossification of posterior longitudinal ligament (OPLL) in patients with degenerative cervical myelopathy (DCM).	A total of 7210 DCM patients (4546 males and 2664 females; mean age: 54 years, age range from 18 to 89 years) who underwent cervical spine three- dimensional computed tomography (3D-CT) at the Shanghai Changzheng Hospital between January 2012 and December 2016 were included in this study.	Demographic data including age, sex, height, body weight, body mass index (BMI), concomitant diabetes meliitus (DM), and hypertension were recorded. The imaging diagnosis criterion for OPL was thickness >2mm on axial imaging. All images were reviewed by five experienced spinal surgeons who were familiar with the diagnosis of OPLL. They reviewed the images without knowing the original radiological reports to determine the diagnosis of OPLL before release of the radiological reports.	between the two groups (P<0.001). The prevalence of OPLL in DM and hypertensive patients was significantly higher than that in non-DM and normotensive patients (24.16% vs. 18.76% and 22.26% vs. 17.91%, both P<0.001). Comparison by age and BMI showed that the prevalence of OPLL was	The authors note several limitations. First, to analyze a larger sample to reduce bias and the premise of maintaining the high reliability assessment, they note failure to evaluate the detailed characteristics of OPLL in addition, the proportion of symptomatic patients with OPLI remains unclear. Further studies are needed to verify these results.
Liu P, Liang Y, Bian C, et al. Diagnostic accuracy of MR, CT, and ECT in the differentiation of neoplastic from nonneoplastic spine lesions. Asia Pac J Clin Oncol. 2020; 16(5):e192-e197.	Single center retrospective	Low	To provide guidance for appropriate imaging examinations for diagnosing spinal tumors or tumor-like lesions.	The study included 121 patients (62 men and 59 wormen, between 24 and 83 [57.2 ± 13.9] years of age) with supected spinal tumors. Exclusion criteria included incomplete imaging data, unclear pathological diagnoses, accompanying metabolic bone disease, spinal surgery, current treatment for infections, or history of antituberculosis treatment.	Each patient underwent ≥ 2 imaging examinations, including computerized tomography (CT), magnetic resonance (NR), and/or emission computed tomography (ECT). All patients were diagnosed by pathology after core needle or surgical biopsies. The results were compared with those of pathological examinations using paired chi squared tests, and comparedwith each other. Statistical indicators that tested the consistency of the results included McNemar's and kappa coefficients, as well as receiver operating characteristic curves.	kappa coefficient of MR, CT, and ECT was 46.1%, 36.0%, and 55.9%, respectively. The area under the curve of ECT, MR, and CT scans was 0.809, 0.705, and 0.704, respectively; and the differences among them were significant (P < 0.5). Post hoc multiple comparisons showed no significant	Study was limited by the number of cases in which ECT was not further divided into PET/CT and SPECT/CT imaging. Therefore, the difference between these two techniques is not clear. Moreover, the tumors were not differentiated into benign or malignant, and images may have shown some variance.

Shim E, Lee JW, Lee E, et al. Cervical spondylotic myelopathy: Diagnostic performance of radiologists with		low	both 1.5 and 3-T MRI modalities	A total of 79 patients were enrolled in this study (48 men, 31 women; mean age%56.8 years; age range = 30–75	Four independent readers with different levels of experience reviewed 1.5-T and 3-T MR images of 79 patients with cervical spondylopathies. For both field strengths, images were	Inter-observer agreements among the four readers were 0.718 for 1.5-T and 0.784 for 3-T MR images. Diagnostic accuracy of each reader was slightly increased using 3-T and varied regardless of level of reader experience. The	The present study has several limitations. First, the protocols used to acquire 1.5-T MRI data at outside hospitals were heterogeneous. Second, the gold
varying levels of experience in comparing MR images acquired using Field strengths of 1.5 and 3 Tesla. Acta Radiol. 2019; 60(10):1314-1320.			spondylotic myelopathy (CSM) among radiologists with varying experience levels.	years). The cord was evaluated at a total of 632 cervical disc levels among the 79 patients (eight cervical disc levels per patient).	evaluated for the depiction of intramedullary 12 hyperintensity of the cord according to disc level using a 5-point scale. The score was transformed into a 3- point certainty scale, which converted to absolute value (0 = equivocal, 1 = probable, 2 = definite lesion). Linear mixed model statistics were used to compare the depiction and certainty scale between 1.5-T and 3 T images. Inter-observer agreement was assessed by using Kendall's W statistics.	certainty of CSM diagnosis was significantly improved using 3-T field strength. Equivocal lesions were significantly decreased in 3-T MR in all readers. The authors conclude that, compared with 1.5-T MRI, 3-T imaging increased the certainty of the lesion and decreased the number of equivocal lesions in patients with CSM. Diagnostic accuracy was not affected by levels of reader experience.	standards of myelopathy were made by consensus readings owing to the nature of spinal cord lesions that could not be pathologically confirmative and no definite relationships with the clinical complaints such as neck pain. Third, the pattern of intramedullary T2 hyperintensity of the cord was not assessed. There are amay studies that have reported a difference in the prognosis of patients according to the shape, margin, and degree of signal intensity of cervical myelopathy on T2W images. The agreement rate and diagnostic certainty of 3- T and 1.5-TMR images may be different depending on patterns of intramedullary T2 hyperintensity.
	Randomized controlled trial	high	was first to analyze the effect of intramedullary spinal cord changes in signal intensity (hyperintensity on T2-weighted imaging and hypointensity on T1- weighted imaging) on magnetic	57.5; mean age of group P = 59.3) with cervical myelopathy due to OPLL were enrolled and assigned to either group A (receiving anterior decompression and fusion, n = 27) or group P (receiving posterior laminectomy, n = 29).	Fifty-six patients with cervical myelopathy due to OPLL were enrolled and assigned to either group A (receiving anterior decompression and fusion, n = 27) or group P (receiving posterior laminectomy, n = 29). All the patients were followed up for an average 0.3 months (12-34 months). The clinical outcomes were assessed by the average operative time, blood loss, Japanese Orthopedic Association (IOA) score, improvement rate (IR) and complication. To determine the relevant statistics, the authors made two factorial designs and regrouped the data of all patients to group H (with hyperintensity on MRI, n = 31), group L (with hypointensity on MRI, n = 19) and group N (no signal on MRI, n = 25), and then to further six subgroups as well: All (with hypointensity on MRI from group A, n = 15), PH (with hyperintensity on MRI from group A, n = 15), PH (with hyperintensity on MRI from group A, n = 15), PH (with hypointensity on MRI from group A, n = 15), PH (with hypointensity on MRI from group A, n = 13), AL (with hypointensity on MRI from group A, n = 13), AL (with hypointensity on MRI from group A, n = 13), AL (with hypointensity on MRI from group A, n = 13), AL (with hypointensity on MRI from group A, n = 13), AN (no signal intensity on MRI from group A, n = 12) and PN (no signal intensity on T2-weighted imaging and hypointensity on T1-weighted imaging had a close relationship with the JOA score and IR.	the subgroup AN and PN (P > 0.05). In conclusion, regardless of hyperintensity on T2-weighted imaging or hypointensity on T1-weighted imaging in patients with OPLL, sever damage to the spinal cord is indicated. Surgical treatment should be provided before the advent of intramedullary spinal cord changes in signal intensity on MRI. The anterior approach is more effective than posterior approach for treating cervical myelopathy due to OPLL characterized by intramedullary spinal cord changes in signal intensity on MRI.	